NAXCEL®

Pharmacia & Upjohn

brand of ceftiofur sodium sterile powder

For intramuscular and subcutaneous injection in cattle only. For intramuscular injection in swine, sheep, goats and horses. For subcutaneous injection only in dogs, day-old chickens and day-old turkey poults. This product may be used in lactating dairy cattle, sheep and goats.

CAUTION: Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION

NAXCEL Sterile Powder contains the sodium salt of ceftiofur which is a broad spectrum cephalosporin antibiotic active against gram-positive and gram-negative bacteria including β-lactamase-producing strains. Like other cephalosporins, ceftiofur is bactericidal in vitro, resulting from inhibition of cell wall synthesis.

Each mL of the reconstituted drug contains ceftiofur sodium equivalent to 50 mg ceftiofur. The pH was adjusted with sodium hydroxide and monobasic potassium phosphate.

Chemical Structure of Ceftiofur Sodium

Chemical Name of Ceftiofur Sodium

5-Thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid,7-\{[2-amino-4-thiazolyl](methoxyimino-acetyl]amino]-3-\{[(2-furanyl-carbonyl]thio]methyl]-8-oxo-\, monosodium salt, [6R-[6α,7β(Z)]]-

RECONSTITUTION OF THE STERILE POWDER

NAXCEL Sterile Powder should be reconstituted as follows:

1 gram vial - Reconstitute with 20 mL Sterile Water for Injection. Each mL of the resulting solution contains ceftiofur sodium equivalent to 50 mg ceftiofur.

4 gram vial - Reconstitute with 80 mL Sterile Water for Injection. Each mL of the resulting solution contains ceftiofur sodium equivalent to 50 mg ceftiofur.

Shake thoroughly prior to use.

INDICATIONS

Cattle

NAXCEL Sterile Powder is indicated for treatment of bovine respiratory disease (shipping fever, pneumonia) associated with Mannheimia haemolytica, Pasteurella multocida and Histophilus somni. NAXCEL Sterile Powder is also indicated for treatment of acute bovine interdigital necrobacillosis (foot rot, pododermatitis) associated with Fusobacterium necrophorum and Bacteroides melaninogenicus.

Swine

NAXCEL Sterile Powder is indicated for treatment/control of swine bacterial respiratory disease (swine bacterial pneumonia) associated with Actinobacillus (Haemophilus) pleuropneumoniae, Pasteurella multocida, Salmonella choleraesuis and Streptococcus suis.

Sheep

NAXCEL Sterile Powder is indicated for treatment of sheep respiratory disease (sheep pneumonia) associated with Mannheimia haemolytica and Pasteurella multocida.

Goats

NAXCEL Sterile Powder is indicated for treatment of caprine respiratory disease (goat pneumonia) associated with Mannheimia haemolytica and Pasteurella multocida.

Horses

NAXCEL Sterile Powder is indicated for treatment of respiratory infections in horses associated with Streptococcus zooepidemicus.

Dogs

NAXCEL Sterile Powder is indicated for the treatment of canine urinary tract infections associated with Escherichia coli and Proteus mirabilis.

Day-Old Chicks

NAXCEL Sterile Powder is indicated for the control of early mortality, associated with E. coli organisms susceptible to ceftiofur, in day-old chicks.

Day-Old Turkey Poults

NAXCEL Sterile Powder is indicated for the control of early mortality, associated with E. coli organisms susceptible to ceftiofur, in day-old turkey poults.

DOSAGE AND ADMINISTRATION

Cattle

Administer to cattle by intramuscular or subcutaneous injection at the dosage of 0.5 to 1.0 mg ceftiofur per pound (1.1 to 2.2 mg/kg) of body weight (1-2 mL reconstituted sterile solution per 100 lbs body weight). Treatment should be repeated at 24-hour intervals for a total of three consecutive days. Additional treatments may be given on days four and five for animals which do not show a satisfactory response (not recovered) after the initial three
The safety of ceftiofur has not been determined for dogs intended for breeding, or pregnant dogs.

Dogs

Administer to dogs by intramuscular injection at the dosage of 0.5 to 1.0 mg ceftiofur per pound (1.1 to 2.2 mg/kg) of body weight (1-2 mL reconstituted sterile solution per 100 lbs body weight). Treatment should be repeated at 24-hour intervals for a total of three consecutive days. Additional treatments may be given on days four and five for animals which do not show a satisfactory response (not recovered) after the initial three treatments. Selection of dosage (0.5 to 1.0 mg/lb) should be based on the practitioner’s judgement of severity of disease (i.e., extent of elevated body temperature, depressed physical appearance, increased respiratory rate, coughing and/or loss of appetite).

Goats

Administer to goats by intramuscular injection at the dosage of 0.5 to 1.0 mg ceftiofur per pound (1.1 to 2.2 mg/kg) of body weight (1-2 mL reconstituted sterile solution per 100 lbs body weight). Treatment should be repeated at 24-hour intervals for a total of three consecutive days. Additional treatments may be given on days four and five for animals which do not show a satisfactory response (not recovered) after the initial three treatments. Selection of dosage (0.5 to 1.0 mg/lb) should be based on the practitioner’s judgement of severity of disease (i.e., extent of elevated body temperature, depressed physical appearance, increased respiratory rate, coughing and/or loss of appetite). Pharmacokinetic data indicate that elimination of the drug is more rapid in lactating does. For lactating does, the high end of the dose range is recommended.

Horses

Administer to horses by intramuscular injection at the dosage of 1.0 to 2.0 mg ceftiofur per pound (2.2 to 4.4 mg/kg) of body weight (2-4 mL reconstituted sterile solution per 100 lbs body weight). A maximum of 10 mL may be administered per injection site. Treatment should be repeated at 24-hour intervals, continued for 48 hours after clinical signs have disappeared and should not exceed 10 days.

Day-Old Chicks

Administer by subcutaneous injection in the neck region of day-old chicks at the dosage of 0.08 to 0.20 mg ceftiofur/chick. One mL of the 50 mg/mL reconstituted solution will treat approximately 250 to 625 day-old chicks.

Reconstituted NAXCEL Sterile Powder is to be administered to birds by subcutaneous injection only. A sterile 26 gauge needle and syringe or properly cleaned automatic injection machine should be used.

Day-Old Turkey Poults

Administer by subcutaneous injection in the neck region of day-old turkey poults at the dosage of 0.17 to 0.5 mg ceftiofur/poult. One mL of the 50 mg/mL reconstituted solution will treat approximately 100 to 294 day-old turkey poults.

Reconstituted NAXCEL Sterile Powder is to be administered by subcutaneous injection only.

CONTRAINDICATIONS

As with all drugs, the use of NAXCEL Sterile Powder is contraindicated in animals previously found to be hypersensitive to the drug.

WARNINGS

NOT FOR HUMAN USE. KEEP OUT OF REACH OF CHILDREN.

Penicillins and cephalosporins can cause allergic reactions in sensitized individuals. Topical exposure to such antimicrobials, including ceftiofur, may elicit mild to severe allergic reactions in some individuals. Repeated or prolonged exposure may lead to sensitization. Avoid direct contact of the product with the skin, eyes, mouth, and clothing.

Persons with a known hypersensitivity to penicillin or cephalosporins should avoid exposure to this product.

In case of accidental eye exposure, flush with water for 15 minutes. In case of accidental skin exposure, wash with soap and water. Remove contaminated clothing. If allergic reaction occurs (e.g., skin rash, hives, difficult breathing), seek medical attention.

The material safety data sheet contains more detailed occupational safety information. To obtain a material safety data sheet (MSDS) please call 1-800-733-5500. To report any adverse event please call 1-800-366-5288.

label directions:

RESIDUE WARNINGS:

Cattle: When used according to label indications, dosage and routes of administration, treated cattle must not be slaughtered for 4 days following the last treatment. When used according to label indications, dosage and routes of administration, a milk discard time is not required. Use of dosages in excess of those indicated or by unapproved routes of administration, such as intramammary, may result in illegal residues in edible tissues and/or milk.

Swine: When used according to label indications, dosage and route of administration, treated pigs must not be slaughtered for 4 days following the last treatment. Use of dosages in excess of those indicated or by unapproved routes of administration may result in illegal residues in edible tissues.

Sheep: Neither a pre-slaughter drug withdrawal interval nor a milk discard time is required when this product is used according to label indications, dosage, and route of administration. Use of dosages in excess of those indicated or by unapproved routes of administration, such as intramammary, may result in illegal residues in edible tissues and/or milk.

Goats: Neither a pre-slaughter drug withdrawal interval nor a milk discard time is required when this product is used according to label indications, dosage, and route of administration. Use of dosages in excess of those indicated or by unapproved routes of administration, such as intramammary, may result in illegal residues in edible tissues and/or milk.

Horses: Do not use in horses intended for human consumption.

PRECAUTIONS

The effects of ceftiofur on the reproductive performance, pregnancy, and lactation of cattle, swine, sheep, and goats have not been determined.

Cattle

Following subcutaneous administration of ceftiofur sodium in the neck of cattle, small areas of discoloration at the site may persist beyond five days, potentially resulting in trim loss of edible tissues at slaughter. As with any parenteral injection, localized post-injection bacterial infections may result in abscess formation. Attention to hygienic procedures can minimize their occurrence.

Swine

The safety of ceftiofur has not been determined for swine intended for breeding.

Horses

The safety of ceftiofur has not been determined for horses intended for breeding. The administration of antimicrobials to horses under conditions of stress may be associated with acute diarrhea that could be fatal. If acute diarrhea is observed, discontinue use of this antimicrobial and initiate appropriate therapy.

Dogs

The safety of ceftiofur has not been determined for dogs intended for breeding, or pregnant dogs.

ADVERSE REACTIONS
The use of ceftiofur may result in some signs of immediate and transient local pain to the animal.

CLINICAL MICROBIOLOGY
Summaries of MIC data are presented in Tables 1 and 2. Testing followed Clinical and Laboratory Standards Institute (CLSI) Guidelines.
Based on the pharmacokinetic studies of ceftiofur in swine and cattle after a single intramuscular injection of 1.36 to 2.27 mg ceftiofur equivalents/lb (3.0 to 5.0 mg/kg) BW (swine) or 0.5 to 1.0 mg ceftiofur equivalents/lb (1.1 to 2.2 mg/kg) BW (cattle) and the MIC and disk (30 µg) diffusion data, the following breakpoints are recommended by CLSI.

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>MIC (µg/mL)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 21</td>
<td>≤ 2.0</td>
<td>(S) Susceptible</td>
</tr>
<tr>
<td>18-20</td>
<td>4.0</td>
<td>(I) Intermediate</td>
</tr>
<tr>
<td>≤ 17</td>
<td>≥ 8.0</td>
<td>(R) Resistant</td>
</tr>
</tbody>
</table>

A report of “Susceptible” indicates that the pathogen is likely to be inhibited by generally achievable blood levels. A report of “Intermediate” is a technical buffer zone and isolates falling into this category should be retested. Alternatively the organism may be successfully treated if the infection is in a body site where drug is physiologically concentrated. A report of “Resistant” indicates that the achievable drug concentrations are unlikely to be inhibitory and other therapy should be selected.

Based on the pharmacokinetic studies of ceftiofur in horses after a single intramuscular injection of 1 mg ceftiofur equivalents/lb (2.2 mg/kg) BW, clinical effectiveness data and MIC data, the following breakpoint is recommended by CLSI.

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>MIC (µg/mL)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 22</td>
<td>≤ 0.25</td>
<td>(S) Susceptible</td>
</tr>
</tbody>
</table>

The susceptible only category is used for populations of organisms (usually one species) for which regression analysis (disk vs. MIC) cannot be performed. These breakpoints will permit detection of strains with decreased susceptibility as compared to the original population.

Standardized procedures require the use of laboratory control organisms for both standardized diffusion techniques and standardized dilution techniques. The 30 µg ceftiofur sodium disk should give the following zone diameters and the ceftiofur sodium standard reference powder (or disk) should provide the following MIC values for the reference strain. Ceftiofur sodium disks or powder reference standard is appropriate for both ceftiofur salts.

Table 1. Ceftiofur MIC Values of Bacterial Isolates from Clinical Field Studies in the USA

<table>
<thead>
<tr>
<th>Organism</th>
<th>Number Tested</th>
<th>Date Tested</th>
<th>MIC90* (µg/mL)</th>
<th>MIC Range (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOVINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>461</td>
<td>1988-1992</td>
<td>0.06</td>
<td>≤0.03-0.13</td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>42</td>
<td>1993</td>
<td>0.015</td>
<td>≤0.003-0.03</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>318</td>
<td>1988-1992</td>
<td>0.06</td>
<td>≤0.03-0.25</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>48</td>
<td>1993</td>
<td>≤0.003</td>
<td>≤0.003-0.015</td>
</tr>
<tr>
<td>Histophilus somni</td>
<td>109</td>
<td>1988-1992</td>
<td>0.06</td>
<td>≤0.03-0.13</td>
</tr>
<tr>
<td>Histophilus somni</td>
<td>59</td>
<td>1993</td>
<td>≤0.0019</td>
<td>no range</td>
</tr>
<tr>
<td>Fusobacterium necrophorum</td>
<td>17</td>
<td>1994</td>
<td>≤0.06</td>
<td>no range</td>
</tr>
<tr>
<td>SWINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinobacillus pleurop.</td>
<td>83</td>
<td>1993</td>
<td>≤0.03</td>
<td>≤0.03-0.06</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>74</td>
<td>1993</td>
<td>≤0.03</td>
<td>≤0.03-0.06</td>
</tr>
<tr>
<td>Streptococcus suis</td>
<td>94</td>
<td>1993</td>
<td>0.25</td>
<td>≤0.03-1.0</td>
</tr>
<tr>
<td>Salmonella choleraeuis</td>
<td>50</td>
<td>1993</td>
<td>1.0</td>
<td>1.0-2.0</td>
</tr>
<tr>
<td>beta-hemolytic Streptococcus spp.</td>
<td>24</td>
<td>1993</td>
<td>≤0.03</td>
<td>≤0.03-0.06</td>
</tr>
<tr>
<td>Actinobacillus suis</td>
<td>77</td>
<td>1998</td>
<td>0.0078</td>
<td>0.0019-0.0078</td>
</tr>
<tr>
<td>Haemophilus parasuis</td>
<td>76</td>
<td>1998</td>
<td>0.06</td>
<td>0.0039-0.25</td>
</tr>
<tr>
<td>SHEEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>39</td>
<td>1992</td>
<td>0.13</td>
<td>≤0.03-0.13</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>23</td>
<td>1992</td>
<td>≤0.03</td>
<td>no range</td>
</tr>
<tr>
<td>CANINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>44</td>
<td>1992</td>
<td>4.0</td>
<td>0.06-64.0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>18</td>
<td>1990</td>
<td>0.25</td>
<td>0.13-0.5</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>17</td>
<td>1990</td>
<td>≤0.06</td>
<td>≤0.06-0.5</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>23</td>
<td>1992</td>
<td>1.0</td>
<td>0.06-4.0</td>
</tr>
<tr>
<td>TURKEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1204</td>
<td>1995</td>
<td>1.0</td>
<td>0.13-32.0</td>
</tr>
</tbody>
</table>

MIC90 is the Minimum Inhibitory Concentration for 90% of the isolates.

Table 2. Ceftiofur MIC Values of Bacterial Isolates from Diagnostic Laboratories in the USA and Canada

<table>
<thead>
<tr>
<th>Organism</th>
<th>Number Tested</th>
<th>Date Tested</th>
<th>MIC90** (µg/mL)</th>
<th>MIC Range (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOVINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>110</td>
<td>1997-1998</td>
<td>0.06</td>
<td>≤0.03-0.25</td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>139</td>
<td>1998-1999</td>
<td>≤0.03</td>
<td>≤0.03-0.5</td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>209</td>
<td>1999-2000</td>
<td>≤0.03</td>
<td>≤0.03-0.12</td>
</tr>
<tr>
<td>Mannheimia haemolytica</td>
<td>189</td>
<td>2000-2001</td>
<td>≤0.03</td>
<td>≤0.03-0.12</td>
</tr>
<tr>
<td>Organism</td>
<td>Code</td>
<td>Year</td>
<td>Type 1</td>
<td>Type 2</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>107</td>
<td>1997-1998</td>
<td>≤0.03</td>
<td>≤0.03-0.25</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>181</td>
<td>1998-1999</td>
<td>≤0.03</td>
<td>≤0.03-0.5</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>208</td>
<td>1999-2000</td>
<td>≤0.03</td>
<td>≤0.03-0.12</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>259</td>
<td>2000-2001</td>
<td>≤0.03</td>
<td>≤0.03-0.12</td>
</tr>
<tr>
<td>Histophilus somni</td>
<td>48</td>
<td>1997-1998</td>
<td>≤0.03</td>
<td>≤0.03-0.25</td>
</tr>
<tr>
<td>Histophilus somni</td>
<td>87</td>
<td>1998-1999</td>
<td>≤0.03</td>
<td>≤0.03-0.125</td>
</tr>
<tr>
<td>Histophilus somni</td>
<td>77</td>
<td>1999-2000</td>
<td>≤0.03</td>
<td>≤0.03-0.12</td>
</tr>
<tr>
<td>Bacteroides fragilis group</td>
<td>29</td>
<td>1994</td>
<td>16.0</td>
<td>≤0.06–>16.0</td>
</tr>
<tr>
<td>Bacteroides spp., non-fragilis group</td>
<td>12</td>
<td>1994</td>
<td>16.0</td>
<td>0.13–>16.0</td>
</tr>
<tr>
<td>Peptostreptococcus anaerobius</td>
<td>12</td>
<td>1994</td>
<td>2.0</td>
<td>0.13-2.0</td>
</tr>
<tr>
<td>SWINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinobacillus pleurpn.</td>
<td>97</td>
<td>1997-1998</td>
<td>≤0.03</td>
<td>no range</td>
</tr>
<tr>
<td>Actinobacillus pleurpn.</td>
<td>111</td>
<td>1998-1999</td>
<td>≤0.03</td>
<td>≤0.03-0.25</td>
</tr>
<tr>
<td>Actinobacillus pleurpn.</td>
<td>126</td>
<td>1999-2000</td>
<td>≤0.03</td>
<td>≤0.03-0.06</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>114</td>
<td>1997-1998</td>
<td>≤0.03</td>
<td>≤0.03-1.0</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>147</td>
<td>1998-1999</td>
<td>≤0.03</td>
<td>≤0.03-0.5</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>173</td>
<td>1999-2000</td>
<td>≤0.03</td>
<td>≤0.03-0.06</td>
</tr>
<tr>
<td>Pasteurella multocida</td>
<td>186</td>
<td>2000-2001</td>
<td>≤0.03</td>
<td>≤0.03-0.12</td>
</tr>
<tr>
<td>Streptococcus suis</td>
<td>106</td>
<td>1997-1998</td>
<td>0.5</td>
<td>≤0.03-4.0</td>
</tr>
<tr>
<td>Streptococcus suis</td>
<td>142</td>
<td>1998-1999</td>
<td>0.25</td>
<td>≤0.03-1.0</td>
</tr>
<tr>
<td>Streptococcus suis</td>
<td>146</td>
<td>1999-2000</td>
<td>0.06</td>
<td>≤0.03-4.0</td>
</tr>
<tr>
<td>Streptococcus suis</td>
<td>167</td>
<td>2000-2001</td>
<td>0.06</td>
<td>≤0.03-4.0</td>
</tr>
<tr>
<td>Salmonella choleraesuis</td>
<td>96</td>
<td>1999-2000</td>
<td>1.0</td>
<td>0.03–>4.0</td>
</tr>
<tr>
<td>Salmonella choleraesuis</td>
<td>101</td>
<td>2000-2001</td>
<td>1.0</td>
<td>0.5-2.0</td>
</tr>
<tr>
<td>EQUINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus equi subsp. equi</td>
<td>12</td>
<td>1994</td>
<td>≤0.0019</td>
<td>no range</td>
</tr>
<tr>
<td>Streptococcus equi subsp. equi</td>
<td>29</td>
<td>2002</td>
<td>≤0.03</td>
<td>≤0.03-0.05</td>
</tr>
<tr>
<td>Streptococcus zooepidemicus</td>
<td>48</td>
<td>1994</td>
<td>≤0.0019</td>
<td>no range</td>
</tr>
<tr>
<td>Streptococcus zooepidemicus</td>
<td>59</td>
<td>2002</td>
<td>≤0.03</td>
<td>≤0.03-0.25</td>
</tr>
<tr>
<td>Rhodococcus equi</td>
<td>66</td>
<td>1998</td>
<td>4.0</td>
<td>≤0.03-16.0</td>
</tr>
<tr>
<td>Rhodococcus equi</td>
<td>42</td>
<td>2002</td>
<td>8.0</td>
<td>≤0.03–>32.0</td>
</tr>
<tr>
<td>Bacteroides fragilis group</td>
<td>32</td>
<td>1995</td>
<td>>16.0</td>
<td>0.13–>16.0</td>
</tr>
<tr>
<td>Bacteroides spp. non-fragilis group</td>
<td>12</td>
<td>1995</td>
<td>4.0</td>
<td>0.25-4.0</td>
</tr>
<tr>
<td>Fusobacterium necrophorum</td>
<td>16</td>
<td>1995</td>
<td>≤0.06</td>
<td>no range</td>
</tr>
<tr>
<td>CANINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>26</td>
<td>2000</td>
<td>32</td>
<td>0.25–>32.0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>14</td>
<td>2000</td>
<td>0.25</td>
<td>0.06-0.25</td>
</tr>
<tr>
<td>TURKEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>17</td>
<td>1998-1999</td>
<td>1.0</td>
<td>0.25-1.0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>25</td>
<td>1999-2000</td>
<td>0.50</td>
<td>0.12-0.5</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>20</td>
<td>2000-2001</td>
<td>2.0</td>
<td>0.12-16.0</td>
</tr>
<tr>
<td>Citrobacter spp.</td>
<td>37</td>
<td>1995</td>
<td>32.0</td>
<td>0.5–>32.0</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>51</td>
<td>1995</td>
<td>>32.0</td>
<td>0.13–>32.0</td>
</tr>
<tr>
<td>Klebsiella spp.</td>
<td>100</td>
<td>1995</td>
<td>1.0</td>
<td>0.13-2.0</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>19</td>
<td>1995</td>
<td>1.0</td>
<td>0.06-32.0</td>
</tr>
<tr>
<td>Pseudomonas spp.***</td>
<td>31</td>
<td>1995</td>
<td>>32.0</td>
<td>0.06–>32.0</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>24</td>
<td>1995</td>
<td>1.0</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>Staphylococcus spp. (coagulase positive)</td>
<td>17</td>
<td>1995</td>
<td>2.0</td>
<td>1.0-2.0</td>
</tr>
<tr>
<td>Staphylococcus spp. (coagulase negative)</td>
<td>26</td>
<td>1995</td>
<td>8.0</td>
<td>0.13–>32.0</td>
</tr>
<tr>
<td>CHICKEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>62</td>
<td>1997-1998</td>
<td>0.50</td>
<td>0.25-2.0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>53</td>
<td>1998-1999</td>
<td>4.0</td>
<td>0.25–>4.0</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>67</td>
<td>1999-2000</td>
<td>0.50</td>
<td>0.12-16.0</td>
</tr>
</tbody>
</table>
To determine the safety factor and to measure the muscle irritancy potential in swine, a safety/toxicity study was conducted. Five barrows and five wethers were given formulated ceftiofur by the intramuscular route with 11 times the highest recommended dose of 2.27 mg/lb/day. The histopathological evaluations were conducted at posttreatment days 1, 3, 7 and 14. Irreversible inflammation from all groups including the controls indicated that the formulation is a slight muscle irritant.

In a 15-day safety/toxicity study 5 lactating does, 5 dry does, and 5 wethers were given formulated ceftiofur by the intramuscular route at 0 (sterile water vehicle), 1, 3, 5 and 10 times the highest recommended dose of 2.27 mg/lb/day of body weight and 5 times the recommended treatment length of 3 days. There were no adverse systemic effects indicating that formulated ceftiofur has a wide margin of safety when injected intramuscularly into feeder pigs at the highest dose level. In the reversibility phase of the study (5X dose), the thrombocytopenia reversed within 8 days, and of the two anemic animals the male recovered within 6 weeks and the female was sacrificed due to the severity of the anemia.

In the 15-day tolerance study in normal feeder calves indicated that formulated ceftiofur was well tolerated at administered intramuscularly had no adverse systemic effects. Ceftiofur administered intramuscularly to pigs produced no overt adverse signs of toxicity.

To determine the safety factor and to measure the muscle irritancy potential in swine, a safety/toxicity study was conducted. Five barrows and five wethers per group were intramuscularly administered formulated ceftiofur at 0 (vehicle control), 1, 3, 5 and 10 times the highest recommended dose of 1.0 mg/lb/day to determine the safety factor. There were no adverse systemic effects indicating that the formulated ceftiofur has a wide margin of safety when injected intramuscularly into the feeder calves at 10 times (10 mg/lb/day) the recommended dose for three times (15 days) the recommended three to five days of therapy. The formulation was shown to be a slight muscle irritant based on results of histopathological evaluation of the injection sites at 1 and 3 times the highest recommended dose of 1.0 mg/lb/day. The histopathological evaluations were conducted at posttreatment days 1, 3, 7 and 14. The injection of NAXCEL Sterile Poweder at the recommended dose administered SC in the neck of cattle was well tolerated. However, a several square centimeter area of yellow-red discoloration resulting from a single SC injection persisted in many of the cattle beyond 4.5 days post-injection. Also, one of the animals developed an abscess at the injection site.

ANIMAL SAFETY

Cattle

Results from a five-day tolerance study in normal feeder calves indicated that formulated ceftiofur was well tolerated when administered at 57 mg/kg/day (more than 25 times the highest recommended daily dosage of 2.27 mg/lb of body weight) for five consecutive days. Ceftiofur administered intramuscularly to pigs produced no overt adverse signs of toxicity.

In a 15-day safety/toxicity study, five steer and five heifer calves per group were intramuscularly administered formulated ceftiofur at 0 mg/lb/day (saline control), 1, 3, 5 and 10 times the highest recommended dose of 1.0 mg/lb/day to determine the safety factor. There were no adverse systemic effects indicating that formulated ceftiofur was well tolerated at the recommended level (1.0 mg/lb) for 5-14 days. When administered subcutaneously for 42 consecutive days, one of four females developed thrombocytopenia (15 days) and anemia (36 days). Thrombocytopenia and anemia also occurred at the 3X and 5X dose levels. In the reversibility phase of the study (5X dose), the thrombocytopenia reversed within 8 days, and of the two anemic animals the male recovered within 6 weeks and the female was sacrificed due to the severity of the anemia.

In the 15-day tolerance study in dogs, high subcutaneous doses (25 and 125 times the recommended therapeutic dose) produced a progressive and dose-related thrombocytopenia, with some dogs also exhibiting anemia and bone marrow changes. The hematopoietic changes noted in dogs treated with ceftiofur were similar to those associated with long-term cephalosporin administration in dogs and also man. The hematopoietic effects are not expected to occur as a result of recommended therapy.

Day-Old Chicks

In an acute toxicity study of ceftiofur in day-old chicks, a total of 60 male and 60 female chicks were each given single subcutaneous injections of 10, 100 or 1,000 mg/kg of body weight. Treatment on day 1 was followed by 6 days of observation; body weight was determined on days 1, 4 and 7; and selected hematologic parameters were evaluated on day 4. No meaningful differences were noted among the treated and control groups of chicks for the parameters evaluated. Histopathologic evaluation of all deaths and chicks surviving to termination did not reveal a target organ or tissue of potential toxicity of ceftiofur when administered at up to 20 times (100 mg/kg) the intended highest use dosage.

Day-Old Turkey Poultts
In an acute toxicity study of ceftiofur in day-old turkey poultts, a total of 30 male and 30 female poultts were each administered single subcutaneous injections of 100, 400 or 800 mg/kg body weight. Injection on day 1 was followed by 6 days of observation; body weight on days 1, 4, and 7; and selected hematologic parameters on day 4. No meaningful differences were noted between the treated groups at 100 or 400 mg ceftiofur/kg and a negative control group for the parameters evaluated. Histopathologic evaluation of deaths and poultts surviving to termination did not reveal a target organ or tissue of potential toxicity of ceftiofur when administered at up to 50 times (400 mg/kg) the highest use dosage. A dose of 800 mg/kg (100 times the intended highest use dosage) was toxic, resulting in clinical signs and deaths accompanied by gross and microscopic morphologic tissue alterations.

TISSUE RESIDUE DEPLETION

Cattle
A radiolabeled residue metabolism study established tolerances for ceftiofur residues in cattle kidney, liver and muscle. These tolerances of ceftiofur residues are 0.4 ppm in kidney, 2.0 ppm in liver, 1.0 ppm in muscle, and 0.1 ppm in milk.

A pivotal tissue residue decline study was conducted in cattle. In this study, cattle received an intramuscular injection of 1.0 mg of ceftiofur per lb body weight (2.2 mg of ceftiofur per kg body weight) for five consecutive days. Ceftiofur residues in tissues were less than the tolerances for ceftiofur residues in tissues such as kidney, liver and muscle by 4 days after dosing. These data collectively support a 4-day pre-slaughter withdrawal period in cattle when used according to label directions.

Swine
Radiolabeled residue metabolism studies established tolerances for ceftiofur residues in swine kidney, liver, and muscle. These tolerances of ceftiofur residues are 0.25 ppm in kidney, 3.0 ppm in liver and 2.0 ppm in muscle.

A pivotal tissue residue decline study was conducted in swine. In this study, pigs received 2.27 mg of ceftiofur per lb body weight (5 mg of ceftiofur per kg body weight) per day for three consecutive days. Ceftiofur residues in tissues were less than the tolerances for ceftiofur residues in tissues such as kidney, liver and muscle by 4 days after dosing. These data collectively support a 4-day pre-slaughter withdrawal period in swine when used according to label directions.

STORAGE CONDITIONS

Store unreconstituted product at controlled room temperature 20° to 25° C (68° to 77° F) [see USP].

Store reconstituted product either in a refrigerator 2° to 8° C (36° to 46° F) for up to 7 days or at controlled room temperature 20° to 25° C (68° to 77° F) [see USP] for up to 12 hours.

Protect from light. Color of the cake may vary from off-white to a tan color. Color does not affect potency.

ONE-TIME SALVAGE PROCEDURE FOR RECONSTITUTED PRODUCT

At the end of the 7-day refrigeration or 12-hour room temperature storage period following reconstitution, any remaining reconstituted product may be frozen for up to 8 weeks without loss in potency or other chemical properties. This is a one-time only salvage procedure for the remaining product. To use this salvaged product at any time during the 8-week storage period, hold the vial under warm running water, gently swirling the container to accelerate thawing, or allow the frozen material to thaw at room temperature. Rapid freezing or thawing may result in vial breakage. Any product not used immediately upon thawing should be discarded.

HOW SUPPLIED

NAXCEL Sterile Powder is available in the following package sizes:

1 gram vial
4 gram vial

NAPA # 140-338, Approved by FDA

Distributed by: Pharmacia & Upjohn Company, Division of Pfizer Inc, NY, NY 10017

814 055 427
3362-03-000

NAC No.: 10490366

Copyright 2011 - North American Compendiums